Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast
نویسندگان
چکیده
BACKGROUND An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways. METHODOLOGY/PRINCIPAL FINDINGS We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H(2)O(2)-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. CONCLUSIONS/SIGNIFICANCE With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.
منابع مشابه
Saccharomyces cerevisiae TFS9, a novel isolated yeast capable of high caffeine-tolerant and its application in biodecaffeination approach
There is a great call for using microbial bio-decaffeination approach to remove caffeinefrom caffeinated products and industrial wastes. We aimed in this study to screen strainsof yeasts which exhibit high caffeine tolerance and to investigate the bio-degradation ofcaffeine under growth conditions. Sixteen yeast strains were isolated from the cultivatedtea soils collected from sites of northern...
متن کاملSystematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth
Target of rapamycin complex 1 (TORC1), which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We sc...
متن کاملA genome–wide screen to identify genes controlling the rate of entry into mitosis in fission yeast
We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found ...
متن کاملGenome-Wide Screening for Genes Associated with FK506 Sensitivity in Fission Yeast
We have been studying calcineurin signal transduction pathway in fission yeast Schizosaccharomyces pombe (S. pombe) by developing a genetic screen for mutants that show hypersensitivity to the immunosuppressive calcineurin inhibitor FK506 (tacrolimus). In the present study, to identify nonessential genes that are functionally related to the calcineurin signaling pathway, we performed a genome-w...
متن کاملIn Silico Genome-Wide Screening for TnrA-Regulated Genes of Bacillus clausii
Bacillus clausii TnrA transcription factor is required for global nitrogen regulation. In order to obtain anoverview of gene regulation by TnrA in B. clausii KSMK16, the entire genome of B. clausii was screened forthe consensus sequence, 5’-TGTNAN7TNACA-3’ known as the TnrA box, and 13 transcription units werefound containing a putative TnrA box. The TnrA targets identified in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009